Average distances between points in graph-directed self-similar fractals
نویسندگان
چکیده
منابع مشابه
Separation Properties for Graph-Directed Self-Similar Fractals
Examples of “separation properties” for iterated function systems of similitudes include: the open set condition, the weak separation property, finite type. Alternate descriptions for these properties and relations among these properties have been worked out. Here we consider the same situation for “graph-directed” iterated function systems, and provide the definitions and proofs for that setti...
متن کاملDimensions of Points in Self-similar Fractals
Self-similar fractals arise as the unique attractors of iterated function systems (IFSs) consisting of finitely many contracting similarities satisfying an open set condition. Each point x in such a fractal F arising from an IFS S is naturally regarded as the “outcome” of an infinite coding sequence T (which need not be unique) over the alphabet Σk = {0, . . . , k − 1}, where k is the number of...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملTube Formulas for Self-Similar Fractals
Tube formulas (by which we mean an explicit formula for the volume of an (inner) ε-neighbourhood of a subset of a suitable metric space) have been used in many situations to study properties of the subset. For smooth submanifolds of Euclidean space, this includes Weyl’s celebrated results on spectral asymptotics, and the subsequent relation between curvature and spectrum. Additionally, a tube f...
متن کاملHausdorff measure of uniform self-similar fractals
Let d ≥ 1 be an integer and E a self-similar fractal set, which is the attractor of a uniform contracting iterated function system (UIFS) on Rd. Denote by D the Hausdorff dimension, by HD(E) the Hausdorff measure and by diam(E) the diameter of E. If the UIFS is parametrised by its contracting factor c, while the set ω of fixed points of the UIFS does not depend on c, we will show the existence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2018
ISSN: 0025-584X
DOI: 10.1002/mana.201600354